skip to main content


Search for: All records

Creators/Authors contains: "Ke, Qinfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, metal–organic framework (MOF)-based polymeric substrates show promising performance in many engineering and technology fields. However, a commonly known drawback of MOF/polymer composites is MOF crystal encapsulation and reduced surface area. This work reports a facile and gentle strategy to produce self-supported MOF predominant hollow fiber mats. A wide range of hollow MOFs including MIL-53(Al)–NH 2 , Al-PMOF, and ZIF-8 are successfully fabricated by our synthetic method. The synthetic strategy combines atomic layer deposition (ALD) of metal oxides onto polymer fibers and subsequent selective removal of polymer components followed by conversion of remaining hollow metal oxides into freestanding MOF predominant hollow fiber structures. The hollow MOFs show boosted surface area, superb porosity, and excellent pore accessibility, and exhibit a significantly improved performance in CO 2 adsorption (3.30 mmol g −1 ), CO 2 /N 2 separation selectivity (24.9 and 21.2 for 15/85 and 50/50 CO 2 /N 2 mixtures), and catalytic removal of HCHO (complete oxidation of 150 ppm within 60 min). 
    more » « less
  2. Abstract

    Comprehensive treatment of indoor contaminants such as volatile organic compounds (VOCs) and fine particulate matter (PM2.5) using transition metal oxide catalysts or functional fibrous filters has gained substantial attention recently. However, coupling VOC oxidation catalysts into high‐performance filter systems remains a challenge. Herein, an overall solution to strongly bind manganese dioxide (MnO2) nanocrystals onto polypropylene (PP) nonwoven fabrics is provided. For the first time, uniform heterogeneous nucleation and growth of MnO2onto PP nonwoven fabrics using intermediate inorganic nucleation films, including Al2O3, TiO2, and ZnO, formed conformally on the fabrics via atomic layer deposition (ALD) are demonstrated. How different ALD thin films influence the crystallinity, morphology, surface area, and surface oxygen species of the MnO2grown ALD‐coated PP fibers is further investigated. In addition to uniformity and integrity, ZnO thin films give rise to MnO2crystals with the largest fraction of available surface oxygen, enabling 99.5% catalytic oxidation of formaldehyde within 60 min. Moreover, the metal oxide filters provide excellent PM removal efficiencies (ePM), achievingePM2.590% andePM1098%, respectively, making the approach an outstanding method to produce fully dual‐functional filtration media.

     
    more » « less